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We study a class of twist maps where the function g(0)=  0(1 -1201- ~) is non- 
analytic (C t) and endowed with a varying degree of inflection z. When z > 3 ,  
reappearance of a KAM torus after its breakup has been observed. We intro- 
duce an "inverse residue criterion" to determine the reappearance point. Scaling 
behavior at the transition points is also studied. For 2 ~<z < 3 the scaling 
exponents are found to vary with z, whereas for z >t 3 they are independent of 
z. in this sense z =  3 plays a role quite similar to that of thc upper critical 
dimension in phase transitions. 
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1. I N T R O D U C T I O N  

The basic methodology in the study of the breakup of KAM tori was intro- 
duced by Greene in his 1979 paperJ ~1 However, even to this date, it is not 
clear how general the conclusions are beyond the standard map. Never- 
theless, the methodology seems to have worked amazingly well in a wide 
range of problems. 

in the context of the standard map the picture for the breakup of 
KAM tori is relatively simple. Each rotational torus is characterized by an 
irrational winding number. These tori serve as barriers to locally stochastic 
motion. However, as the perturbation strength is increased, more and more 
of these tori break up. At a critical perturbation value, the last KAM torus 
characterized by the "golden-mean" winding number breaks up, and global 
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stochasticity will set in. The famous residue criterion was introduced by 
Greene to determine very precisely the transition point. 

In many aspect the breakup of KAM tori is analogous to a phase 
transition. By utilizing concepts and techniques used in the study of phase 
transitions, remarkable progress has been made in the understanding of the 
breakup of KAM tori. In particular, universal scaling exponents ~2"31 
characterizing the transition have been discovered. 

In phase transitions diverse physical system can be divided into 
equivalence classes according to certain criteria. These universality criteria 
are well known in phase transitions. However, in contradistinction to phase 
transitions, much less is known about universality in chaotic transitions. 
Nevertheless, we know, for example, in the case of period doubling, the 
critical-point order ~4~ is one of the universality criteria on which the scaling 
exponents depend. 

To gain a better understanding of universality, we have recently 
studied the circle map, which can be viewed as the dissipative limit of the 
standard map. The circle map is generally used to model the quasiperiodic 
transition to chaos. In this case the degree of inflection z serves a univer- 
sality criterion. The sine function in the circle map possesses a cubic inflec- 
tion point (z = 3). To generalize it to any arbitrary degree of inflection, a 
polynomial function which is nonanalytic (C ~ ) was inventedJ 5'~" The scaling 
exponents are found to depend monotonically on z, and their asymptotic 
limits as z ~ ~ have also been found. ~6) 

To examine the problem of universality in the conservative case, we 
similarly replace the sine function in the standard map by this polynomial 
function. To our amusement we found that z = 3 plays a role quite similar 
to that of the upper critical dimension in phase transitions, i.e., the scaling 
exponents are dependent on z for 2 ~< z < 3, and yet independent of z for 
z~>3. 

The most interesting part of this investigation was, however, the 
phenomenon of the recurrence of KAM tori. ~7 9~ The "golden-mean" KAM 
torus is found to reappear after it has broken up. However, this is true only 
for z > 3; no such reappearance has been observed for z ~< 3. Although we 
have only observed a finite number of reappearances, it can conceivably 
recur infinitely many times. We have proposed an "inverse residue 
criterion" for the determination of the reappearance point, which is com- 
plementary to the "residue criterion" for the determination of the disap- 
pearance point. 

This paper is organized as follows. In Section 2 we write down the 
class of nonanalytic twist maps and discuss their symmetry properties. In 
Section 3 we study the breakup of KAM tori. In Section 4 the problem of 
scaling and universality is investigated. In Section 5 a summary is given. 
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2. N O N A N A L Y T I C  T W I S T  M A P S  

In this paper, we study a class of twist maps 

T: t r i+ j=r i - kg (Oi )  (1) 
LOi+ I = Oi+ ri+ 1 

where Oi~ [ -  1/2, 1/2) and ri~ [0, 1 ]. We choose 15'6) g(O) = 0(1 - 1201 =-  ') ,  
where z denotes the degree of inflection at 0 = 0 .  g(O) is periodically 
extended by defining 0 modulo 1. Hence, 

g(O + �89 = g(O - �89 (2) 

g(�89 = g( - ~) = 0 (3) 

Since g(O) is a C'-function, T represents a class of nonanalytic twist maps. 
Figure 1 plots g(O) for some values of z and the function (1/2~) sin(2rc0). 
Since the extrema of g(O) are no longer symmetrically located at 0 = 1/4 or 
0 = - 1 / 4  for z 4: 2, T is not invariant under a change of sign of k and a 
shift of 0. Therefore, we have to study both parameter regions k > 0 and 
k < 0 .  

The periodic orbits have rational winding numbers a~i= P,/Q,, i.e., 
0e, = 0o + Pi and r~, = ro. The stability properties of the periodic orbits can 
be characterized by the residue, 

R, = ][2 - Tr(DT(") ]  (4) 

0 . 3  ~ ' ' ~ ' 'd 

g 0 

-0.3 
-0.5 0 0.5 

8 
Fig. I. Thc func t iong(#) . (a )z=2; (b) ( I /2~)s in (2~O) ; (c )z=3; (d)z=6.  
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where D T  Q' is the tinearized matrix of T ~ An elliptic orbit has 0 < R~ < 1, 
and a hyperbolic orbit has R i < 0  or R~> l. Since g(O) is an odd function, 
the map is reversible, i.e., it can be written as a product of two involutions 

T =  I2I  j (5) 

where 

~r' = r - kg(O) 
11: ( 0 ' =  - 0  (6) 

I:: / O ' = r - O  (7) 

Since each involution possesses two symmetry lines, there are altogether 
four symmetry lines: 

a. 0 = - 1 / 2  (8) 

b. 0 = 0  (9) 

c. 0 = ( r - 1 ) / 2  (lO) 

d. O=r/2 (11) 

For a particular rational winding number, each orbit (elliptic or hyper- 
bolic) has two points on two of these four lines. One line will be mapped 
to another at the halfway point of the orbit. The pattern of how these lines 
map into each other is called a routing pattern. 

A KAM torus with an irrational winding number to can be 
approximated numerically by a sequence of periodic orbits whose winding 
numbers are the successive convergents of the continued fraction expansion 
of ~o. The particular KAM torus we will focus our attention on is the 
one whose winding number is the inverse of the "golden-mean," 
to=  (w/5-1 ) /2 .  Its convergents are to~=Fi /Fi+j ,  where Fi is the ith 
Fibonacci number, which satisfies F i + I = F e + F ~  ~ with Fo=0 ,  F~ = 1. 
Using this approximation, we found that T still has a dominant symmetry 
line within a certain interval of k. 

In two-dimensional area-preserving maps which model two-degree-of- 
freedom Hamiltonian systems, KAM tori act as one-dimensional barriers 
that prevent the trajectories from diffusing from one region to another. 
When the parameter exceeds a certain critical value, the last KAM torus 
breaks up and becomes a cantorus. A cantorus acts as a partial barrier, 
and diffusion occurs. The theory of transport based on the action varia- 
tional principle can be used not only to predict the diffusion rate, but also 
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to examine the existence of a KAM torus. For the map (1) the generating 
function is 

F(O, O')=-~(O-O')2 +~kO z ~ [201 = - ~ -  1 (12) 

The action of the orbit with winding number Pi/Qe is 

QI-- 1 

We,/Q,= ~ F(Oj, O/+,) (13) 
j = O  

For each winding number PffQ,, there are at least two orbits: one minimax 
( R i > 0 )  orbit and one minimizing (Re<0)  orbit. The action difference 
between these two orbits 

max min zi W~ = W e,/o i -  W ?,/o, >>. O (14) 

gives the area that is transported under one iteration of the map. 

3. B R E A K U P  OF K A M  T O R I  

In this work, we use the following two criteria to study the breakup 
of a KAM torus. 

1. Greene 's  Residue Cr i ter ion .  This criterion postulates a close 
relation between the existence of a KAM torus with an irrational winding 
number o~ and the stability property of the period-Qi orbits as PffQi 
approaches oJ. If a KAM torus exists for k < k~ and disappears for k > k~, 
then 

f0  ~, k < k D 

lira n/(k)= k=k,, (15) 
( + ~ ,  k > k .  

R+(k) are, respectively, the residues of the minimax ( + )  and minimizing 
( - )  period-Qi orbits at a given value of the parameter k. The R + are two 
constants, and I R + r < I. 

2. M a t h e r ' s  A c t i o n - D i f f e r e n c e  Cr i ter ion .  Mather proved ~~ 
that the necessary and sufficient condition for the existence of a KAM 
torus is 314I, o=0. For the standard map, as PffQ~ approaches ~o, 3We 
decreases to zero for k < kz~, and tends to a nonzero constant for k > kz~. 

In most cases Greene's criterion is a very effective numerical method 
to make a precise determination of kt~. Unfortunately, due to the lack of 

822/62/3-4-9 
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k 

Fig. 2. The residt, c R/  as a function of k for z = 2. The number on the curve indicatc~, the 
period (),. The curves hunch into two groups for small k. The upper group has odd Q,; the 
lower one, even Q,. Both groups tend to zero as k ~ 0. 

a rigorous proof, the necessary and sufficient conditions for its validity Js 
not known. Mather's criterion, on the other hand, was rigorously proved; 
and yet in practice it is very difficult to employ to make a precise deter- 
mination of ko. Nevertheless, Mather's criterion still serves as a very useful 
criterion to test the existence of a K A M  torus. One can prove that no 
rotational invariant tori exist for k >/2 and k <<. -2 / ( z  - 1 ). In the following, 

<l 

o ._1 

-20 

-25  

- 30  

-35 
6 7 8 9 

LOG Ol 
I0 

Fig. 3. Plot of log(zlW,) vs. log(Q,). ( a ) z = 2 ,  k = 0 . 3 ;  ( b ) z = 2 . 1 ,  k=0 .1 ;  ( c ) z=2 .1 ,  
k = 1.174. As Q, ~ oo, the flux is nonzero for (a) and (c), but zero for (b). 
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we will discuss the behavior of the "golden-mean" KAM torus for different 
values of z. All computations were done in quadruple precision with 36 
significant figures. 

(1)  k < O  o r  z~<2. Here we found that the dependence of the 
residues on the parameter k is different from that of the standard map: for 
k # 0, R~ --* ov as Q; --* ov (see Fig. 2 for a typical case). It is similar to the 
supercritical case (k>ko) in the standard map. We have computed the 
action difference for several values of k. Figure 3 shows that the action dif- 
ference tends to a nonzero constant as Qi--' ~o. It suggests that there are 
no KAM tori when k # 0. As in the case of the sawtooth map, ko = 0 is the 
critical point for the breakup of the KAM torus. This is similar to a zero- 
temperature phase transition. 

For  z ~< 2 and k > 0 the dominant symmetry line is b, and for k < 0 the 
dominant symmetry line is a. These are the same as in the standard map. 
The residues are monotonic functions of k, and we did not observe any 
reappearance of KAM tori. 

(2)  2 < z ~ < 3 .  Using Greene's criterion, we found k ~ 0 ;  however, 
no reappearance of KAM tori has been observed. From Fig. 4 we see that 
kt) tends to zero monotonically as z decreases from 3 to 2 (see Table Ill). 
This suggests that k = 0 is the critical point for z = 2. For k in the vicinity 
of ko,  the dominant symmetry line is b. 

(3)  z > 3 .  In this case the behavior of the "golden-mean" KAM 
torus is significantly different. We found that there is more than one value 
of k which satisfies Greene's criterion. For example, for z = 4, two disap- 
pearance points k ~ =  1.4129353 and k ~ ) =  1.4261557 have been found. If a 

1.2 

1.0 

I I I I I I I I I 

0.8 

k D 0.6 

0.4 

0.2 

0"02 2.2 2.4 2.6 2.8 5 
Z 

Fig. 4. The cri t ical  value k o as a function of z for 2 ~< z ~< 3. 
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KAM torus disappears at two points, there must be a point kR, k~l~< 
kR < k~ ), at which it reappears. To find kR, we propose an "inverse residue 
criterion" for the reappearance of a KAM torus: 

A KAM torus that has disappeared at ko will reappear at kR (f 

( +oo, k<kR  

lirn R + ( k ) = ~ R  +, k=kR  

~0 +-, k>kR  

(16) 

Using this "inverse residue criterion," we are able to make a precise 
determination of kR. For z=3.8, k~ I 1.38760367; for z=4 ,  k t~1- 
1.42173415. The superscript (i) in K~.,,'~i~h refers to the ith time the KAM 
torus disappears (D) or reappears (R). We have also computed the action 
difference and found (see Fig. 5) 

A W ~ O  if k < k ~ ' o r k ~ ' < k  <k~; ~ ~' 
(17) 

A W ~ c o n s t > 0  if k~'~<k<k~ork>k~'/j 'l~ 

These results together with the scaling behavior to be discussed in the next 
section suggest that kR is the point at which the "golden-mean" KAM 
torus reappears. Figure 6 shows the evolution of the phase portrait from 

1.0 

1,5 

0.5 

0.0 
1.412 

I 
1.416 1.42 

k 

o 

1.424 1.428 

Fig. 5. The  act ion difference A W as a function of k for z = 4 and (Q,, P,) = (1597, 987). 
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Fig. 6. Phase portraits from disappearance to reappearance of the KAM torus for the case 
z = 6. Here 1, 2, and G indicate, respectively, the period-I resonance, period-2 resonance, and 
the "golden-mean" KAM torus. ( a ) k = 0 . 7 0 4 < k ~ ) ;  (b)t'tJ~<k=0.9<k~);,,t, (c)k~ I < k =  
1.35 < k ~  ~ . 
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disappearance to reappearance of the KAM torus for the case z =  6. tn 
Fig. 6a, k < k ~  ), the chaotic regions near the period-1 resonance and the 
period-2 resonance are separated by the KAM torus. In Fig. 6b, k ~ <  
k < k ~  ~, the KAM torus has disappeared and the chaotic regions become 
connected. In Fig. 6c, k~ )<k<t'~2).,t) , the KAM torus has reappeared and 
the chaotic regions become separated again. 

0.2 

Ri 

0.1 

I I 

f 

O 

-0.1 

-0.2 

1.28 
I 

k~ ) 1.35 1.4 
k 

k(D 2) 1.45 

(b) 

Ri 

0.2 i 

O. 

-0.1 

-0 .2  

1.3 

(a) 

1.3s 
k 

ktR ~) k~ 3) 1.45 

Fig. 7. The residue R~ for (Q,, Pi)= (610, 377). (a)z=6; (b)z=6.1; (c) z=6.2. 



Recurrence of KAM Tori in Nonanalytic Twist Maps 641 

(c) 0.2 
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Ri 0 

-0.1 

-0.2 
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kg' 2, 

k 

1.4 k~ } k~ } L,(4)~,(~),,R "D 1.45 

Fig. 7. (Continued) 

It should be emphasized that a KAM torus can recur more than one 
time. For example, for z = 6 we have observed that it recurs at least twice. 
The residues are no longer monotonic functions of k. They tend to infinity 
right after the KAM torus has broken up, and become finite again as the 
KAM torus reappears. Since we cannot ascertain the existence of a "final" 
breakup, the KAM torus can conceivably recur infinitely many times. 
When z is a fraction, the dependence of the residues on k is more com- 
plicated. From Fig. 7 we observe that as z varies, there is a "'bifurcation" 
of the regions in which KAM tori exist. This "bifurcation" is caused by the 
emergence of a pair of disappearance and reappearance points. 

When the system makes the transition from z = 3 to z > 3, the situa- 
tion is much more complicated. Take z --- 3.1 as an example. Figures 8 and 
9 show how the residue of the orbits with different periods varies as a func- 
tion of k. All these orbits have a common symmetry line b. Near k - -0 ,  
R~ < 0 for even-period orbits, and R~> 0 for odd-period orbits. It can be 
seen that the residue of any orbit decreases to the lowest negative value and 
then goes to positive infinity. As the period Q~ is increased, the minimum 
of the residue moves to the right and its absolute value increases. From 
Table I we see that for a given k the residue will change from positive to 
negative as the period is increased. The larger the value of k, the higher the 
period at which R~ changes sign. We cannot find a point that satisfies 
Greene's criterion here. However, the results of the action difference (see 
Fig. 3) show that the "golden-mean" KAM torus exists as long as k is small 
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0.4 

0.2 

Ri 0 

-0.2 

-0.4 ; ~  
1.17325 1.1733 1.17335 1,1734 

k 
1.17:~45 

Fig. 8. The residues R, vs. k for z = 3.1. The number on the curve indicates the period. 

enough, but ceases to exist when k is sufficiently large. It is not clear how 
to apply Greene's  criterion here. 

It should be noted that when there is a reappearance of the K A M  
torus the dominant  symmetry  lines may be different if k is in the vicinity 
of k~ ~. A pair of disappearance and reappearance points have the same 
dominant  symmetry line. For  example, for z = 4, d is the dominant  sym- 

Ri 

0.45 

0.40 

0.35 

0.30 

] 

~l ~rll 
1.173434 1 . 1 7 3 4 3 6  1.173438 

k 

Fig. 9. A blowup of the upper right-hand corner of Fig. 8. 
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Table I. Residue of Period-Q i Orbits for z = 3 . 1  a 
i i 

Q, k = 1.17342 k = 1.173432 k = 1.173436 k = 1.1734365 k = 1.173437 

4181 0.2503 0.3056 0.3258 0.3284 0.3310 
6765 0.1894 0.2932 0.3346 0.3400 0.3456 

10946 0.0573 0.2481 0.3380 0.3503 0.3630 
17711 -0 .1440  0.1358 0.3300 0.3594 0.3902 
28657 -0 .3358 -0 .1734 0.2401 0.3184 0.4041 
46368 -0.1641 -0 .8639 -0 .1766 0.0626 0.3566 
75025 0.0890 -0 .4884 -2 .3977 -1 .5839 -0 .1858 

ii  

"All orbits have a common symmetry line h. Given any k, the residue 
positive to negative provided Q, is large enough. 

will change from 

metry line for k~ (1,4, 1.414) and (1.4217, 1.4218) (the vicinity of k~ ) and 
k~>), whereas c is the dominant symmetry line for k~ (1.426, 1.4263) (the 
vicinity of k~) .  From Table II one can see that there is an exchange of 
stability ~s) between elliptic and hyperbolic orbits for an odd-period orbit as 
the parameter k is increased from k~ I to k~ ~. Stability exchange usually 
occurs when there is a reappearance of KAM tori. However, in this case as 
well as the case 2 < z ~< 3, we have observed an exchange of stability before 
the first breakup of the KAM torus. When k is near zero, there is no 
dominant symmetry line, and the routing pattern is shown in Table II. At 
a certain value of k, an exchange of stability occurs, and a dominant 
symmetry line appears. Table II also shows what kind of orbit will change 

Table II. Routing Patterns for Orbits wi th  Winding 
Number  Pi/Qi when k > 0" 

After After After 
Q, P, R, Before (!) (11) (III) 

Odd Even > 0  h ,~ ,  d b <~ d c . ~  a d , ~  b 

< 0  a .r c a ~,, c b , ~  d a <::, c 

Odd Odd > 0  b <~ c b .*> c c r b d ~ ,  a 

< 0  a . ~ d  a . ~ d  a , ~ d  b ~ c  

Even Odd > 0 c,*~ d h .~  a c -r d d~,~ c 
< 0  a.c~.h c . r  a , ~ . b  a , ~ h  

" Before (after) refers to before (after) the first stability exchange. ~ ,  denotes how the sym- 
metry lines are mapped to each other. There is no dominant  symmetry line before stability 
exchange. The dominant  symmetry lines for cases (I), (II), and (IIl) are, respectively, b, c, 
and d. The dominant  symmetry line is a if and only if k < 0. 



644 Hu et aL 
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J 

0.05 

0 

I I 

/ 
-0.05 ~ . . . .  , , I I 

07 k~' o e k~ 'u  13 k'. ~' 
k 

Fig. 10. The residues R, of the initially elliptic orbits for z = 5. (a)~Q,, P,)= (233, 144~; 
(b) (377, 233); (c) (610, 377). The residues of the initially hyperbolic orbits are symmetrically 
located, and are not shown. Stability exchange occurs before the first breakup of the KAM 
torus for (a), but not for (b) and (c). 

its stability as k is increased from zero to the vicinity of k ~1 Figure 10 
" ~ 1 )  " 

shows the variation of the residues with k. It is evident here that stability 
exchange does not necessarily entail the reappearance of a KAM torus. 

4. SCALING A N D  U N I V E R S A L I T Y  

We first summarize the definitions of various scaling exponents. For a 
pair of minimax and minimizing orbits with winding number PJQ,, we 
relabel and order the orbit elements as follows: 

0Qi(1)<0Q,(2)< -.. < 0Q,(2Oi- 1)<OQ,(2Q~) (t8) 

where OQi(t) is minimax for t odd, and minimizing for t even. The distance 
between two neighboring points is 

d , ( t )  = OQ,(t) - Oe , ( t  + 1) 

Period-1 scaling is defined by 

d,(t) ~( Q, .~-x.,., 
d,§ \Qi+,] 

! 

ri(t)--ri ](t)~ Q~ y"'(,t 

(19) 

(20) 
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and period-3 scaling is defined by 

d,+ 3(t) \Q~+ 3J 
r ' ( t ) -r ' -  3(t) ( Q' ) 
ri~ 3(t)-ri(t) ,,Qi+ 3/ 

- -  y(3)(t ) 

y(3)(t)  (21) 

where xtiJ(t) and yl'~(t) with i =  1 or 3 are the scaling exponents. For 
convenience, the exponents on the dominant symmetry line are denoted 
by x~ ~ and y~O; and the exponents on the symmetry line l ( l=  a, b, c, d) are 
denoted by x~ ~J and y)O. For the standard map (z) it was found 

x(lJ . V ( I ) :  that x(~) = 0 . 7 2 1 , . , .  y~J., = 2.329, x~(3)-- 1.093, ~'(31=2.329,~ and ,,. + j.,. 
x~3~ + j,~3j = 3.05 at the critical point of the breakup of the "golden-mean" 
KAM torus. 

We have calculated the scaling exponents on the symmetry lines at the 
critical points of disappearance and reappearance of the "golden-mean" 
KAM torus for several values of z. For k < 0 or z ~ 2 the critical point is 
k o = 0 ,  and the system is integrable. The scaling exponents can be 
calculated analytically: x(1)(t)= 1 and y( ' ) ( t )=2.  This is just the scaling 
behavior of a linear system. For 2 < z < 3 ,  we found that the scaling 
exponents at the critical point kD vary with z (see Table III and Figs. 11 
and 12). For z = 3 the scaling behavior is the same as that of the standard 
map. Therefore, the scaling behavior changes smoothly from that of a 
linear system to that of the standard map as z varies from 2 to 3. The sum 
of the exponents, x "~ + y(O, which is a more useful quantity in the study of 
transport, shows a slightly increasing trend. However, the increase is too 

Table III. Disappearance Poin ts  k o and t he  Scaling 
Exponents for 2 ~< z ~< 3 

i 

z k,, x~."' y~") x.I,.3' + )'~" x'."' Y~" xl "+ YI."' 

2.0 0 I 2 3 1 2 3 
2.1 0.219 0.965 2.036 3.001 1.005 1.996 3.001 
2.2 0.391 0.935 2.067 3.002 1.013 1.989 3.002 
2.3 0.5375 0.907 2.098 3.005 1.021 1.984 3.005 
2.4 0.6617 0.881 2,127 3.008 1.030 1.978 3.008 
2.5 0.76828 0.858 2.155 3.013 1.038 1.975 3.013 
2.6 0.86037 0.835 2.181 3.016 1.046 1.970 3.016 
2.7 0.94034 0.810 2.211 3.021 1.055 1.967 3.022 
2.8 1,010114 0.788 2.239 3.027 1.063 1.964 3.027 
2.9 1.071375 0.763 2.271 3.034 1.073 1.961 3.034 
3.0 1.125454 0.721 2.330 3.051 1.092 1.959 3.051 

I I i 
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Fig. 1 I, 
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The scaling exponents  x,I ~J and x (3' as a function o f  z for 2 ~< z <~ 3. r 

small to exclude the possibility that it is in fact a constant. When z > 3, it 
was found that the exponents at the disappearance and reappearance 
points are equal and the same as those in the standard map. They are also 
independent of z (see Table IV). Thus z = 3 plays a role similar to that of 
the upper critical dimension in phase transitions. It is, however, not clear 
what causes this change in behavior in the transition from z < 3 to z > 3. 

For all cases of z there are two common points to be noted. The first 
point is that the scaling exponents on the various nondominant  symmetry 
lines are the same approximately, yet they are difl'erenl from those on the 
dominant symmetry line. The sum of the two scaling exponents seems to be 
a constant (see Table V). The second point is that the convergence of 

I I I I ! l 1 [ 
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Fig. 12, The scaling exponents y~3) and yl. 3) as a function o f z  for 2~<z~<3. 
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Table IV. Disappearance (ko) and Reappearance (kR) Points 
and the Scaling Exponents for z>3  

z k x~3, y~3, y.[3,+y!,3, .rl;,, y13, x~],+ y~3, 

3.8 k~=1.38253450 0.7284 2.3261 3 . 0 5 4 5  1.0990 1.9448 3.0438 
k~=1.38760367 0.7226 2.3295 3 .0521  1.1018 1.9512 3.0530 

k~=1.41293530 0.7219 2.3287 3 . 0 5 0 6  1.1045 1.9419 3.0464 
k~=1.42173415 0.7223 2.3281 3 . 0 5 0 4  1.1015 1.9466 3.0481 
k~=1.42615570 0.7203 2.3329 3 . 0 5 3 3  1.0986 1.9425 3.0412 

k~)=0.80993000 0.7234 2.3281 3 . 0 5 1 5  1.1030 1.9432 3.0462 
k~)= 1.05287350 0.72t6 2.3288 3 . 0 5 0 4  1.1040 1.9432 3.0472 
k~l= 1.39647420 0.7221 2.3285 3 . 0 5 0 5  1.1044 1.9422 3.0466 

k~1=0.70400046 0.7218 2.3289 3 . 0 5 0 7  1.1046 1.9421 3.0467 
k ~ =  1.29946540 0.7227 2.3284 3.0511 1.1037 1.9432 3.0470 
k ~ =  1.43731867 0.7228 2.3304 3.0532 1.1121 1.9327 3.0448 
k~l= IA5296340 0.7229 2.3303 3.0533 I.ll21 1.9326 3.0447 
k~)= 1.51257548 0.7221 2.3293 3 . 0 5 1 3  1.1024 1.9454 3.0478 

11 k~ J=0.27830553 0.7211 2.3303 3.0515 1.1021 1.9462 3.0483 

period-3 scaling is better than that of period-I scaling (see Table VI). As a 
matter of fact, since the even and odd combinations of (Qi, Pi) in the 
Fibonacci sequence have period 3, period-3 scaling seems more natural. 
Further evidence is that at the critical values of k the residues intersect at 
different values of R -+ according to the even and odd combinations of 
(Q~, P,). On the nondominant symmetry line it was believed t2~ that the 
scaling behavior is period-3. But on the dominant symmetry line it cannot 
be affirmed whether the scaling behavior is period-I or period-3 from our 

Table V. Scaling Exponents on the Nondominant  Symmetry 
Line at k(~ ) = 1.41 29353 for z = 4 

Q, x~, y13, xl?, + vl,~, .x.l)~ ),~,~, x~3,+ y~;t, .,=13, ),l,~, xi3,+ y~3, 

4181 1.1105 1.9390 3.0495 1.0892 1.9620 3 .0512 1.0888 1.9630 3.0518 
6765 1.1090 1.9367 3 .0457 1.0886 1.9642 3 .0528 1.0887 1.9634 3.0521 

10946 1.1067 1.9400 3 .0467 1.0902 1.9603 3 .0505 1.0881 1.9636 3.0517 
17711 1.1050 1.9415 3.0465 1.0913 1.9623 3 .0536  1.0904 1.9592 3.0496 
28657 1.1037 1.9414 3.0451 1.0902 1.9633 3 .0535 1.0900 1.9637 3.0537 
46368 1.1027 1.9448 3.0475 1.0912 1.9581 3 .0493  1.0905 1.9622 3.0526 
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Table VI, Period-1 and Per iod-3 Scal ing Exponents on the  Dominan t  
Symmetry Line d at k ~ ) =  1.4129353 for z = 4 

i i i i l l l l l  i i  

\ . 1 3 1  . . t -  , { 3 )  Q, x '] '  x',;' y'u" .vl~' x ' , " +  yl] '  . J - .~ ,, 

377 0.6998 0.7349 2.3325 Z3378 3.0323 3.0727 
610 0.7373 0.7363 2.3812 2.3550 3.1185 3.09t2 
987 0.7332 (}.7234 2.2788 2.3417 3.0120 3.0652 

1597 0.7125 0.7277 2.3322 2.3249 3.0447 3.0526 
2584 0.7243 0.7233 2.3609 2.3300 3.0852 3.0533 
4181 0.7317 0.7228 2.2969 2.3334 3.0286 3.0562 
6765 0.7127 0.7229 2.3301 2.3221 3.0428 3.0450 

10946 0.7241 0.7228 2.3512 2.3298 3.0752 3.0526 
17711 0.7270 0.7213 2.3072 2.3307 3.0342 3.0520 
28657 0.7152 0.7221 2.3305 2.3251 3.0457 3.0472 
46368 0.7218 0,7213 2.345 t 2.3292 3.0669 3.0505 

l l= l ,  i i lll l .  i 

numerical data. It seems that both of them tend to the same limit, and dif- 
ferent values of R -+ may eventually tend to the same limit as Q, ~ ~ .  tn 
Fig. 2, the residue curves for z = 2 first bunch into two groups according to 
the type of (Q~, P;), and both of them then tend to zero as k -~ 0. However, 
no matter what the scaling behavior is, period-3 scaling still has the advan- 
tage of giving faster convergence. 

5. S U M M A R Y  

The study of KAM tori in nonanalytic twist maps has revealed a sur- 
prisingly rich set of novel features. The behavior of KAM tori can change 
abruptly as one smoothly changes the degree of inflection z. Our results 
suggest that for k > 0, z = 3 is a major transition point in functional space, 
similar to that of the upper critical dimension in phase transitions. At this 
point the behavior of the "golden-mean" KAM torus is basically the same 
as that in the standard map. This is not surprising, since the algebraic 
function used here is merely the lowest order polynomial approximation to 
the sine function. For  z < 3, there is no recurrence of KAM tori, and the 
scaling exponents vary with z. As z is decreased from 3 to 2, the critical 
point decreases to zero, and the scaling exponents change smoothly from 
those of the standard map to those of a linear system. For z > 3 the KAM 
torus experiences a sequence of disappearance and reappearance as k is 
increased. This recurrence may happen many, even infinitely many, times. 
The scaling exponents at the disappearance and reappearance points are 
the same as those in the standard map, and they are independent of z. 
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The many novel features observed in this work suggest that the 
behavior of KAM tori may in fact be much more complicated than we 
have been accustomed to think. It is thus worthwhile to conduct a more 
thorough study of the KAM theorem as well as the Greene criterion. 
Hopefully, the necessary conditions for their validity can also be found. 
The value of such a study lies not only in its intrinsic importance, but also 
its potential applications. 
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